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J. Phys. A: Math. Gen. 15 (1982) 787-803. Printed in Great Britain 

Gauge invariance in quantum mechanics: charged harmonic 
oscillator in an electromagnetic field? 

Donald H Kobe and Edward C-T Wen 
Department of Physics, North Texas State University, Denton, Texas 76203, USA 

Received 18 June 1981 

Abstract. The gauge-invariant formulation of quantum mechanics is applied to the charged 
harmonic oscillator in an electromagnetic field in the electric dipole approximation to obtain 
the probability that the oscillator is in a particular state at time t. This probability is 
compared with the corresponding ‘probability’ calculated from the conventional approach 
to the interaction of radiation with matter using the interaction A * p .  The probabilities do 
not agree with each other. From the principle of gauge invariance it is concluded that the 
probability calculated from the gauge-invariant formulation is correct in this case, and that 
the conventional approach in general is incorrect. 

1. Introduction 

Gauge invariance is one of the most fundamental symmetry properties of physics. 
However, only recently a manifestly gauge-invariant formulation of non-relativistic 
quantum mechanics has been developed (Yang 1976, Kobe 1978, Kobe and Smirl 
1978). This formulation is based on operators that are gauge invariant (Kobe and Yang 
1980). In particular, the Hamiltonian for a single charged particle in an electromag- 
netic field is not gauge invariant, although it describes the time evolution of the 
wavefunction. Energy is a gauge-invariant concept, so the Hamiltonian in this case is 
not the energy. The energy operator is defined as a gauge-invariant operator whose 
expectation value is the energy transferred to the particle by the electromagnetic field. 
In the gauge-invariant formulation, the wavefunction is expanded in terms of the 
eigenstates of the energy operator. The expansion coefficients in this basis are gauge 
invariant and are properly interpreted as probability amplitudes for finding the system 
in an energy eigenstate. 

This gauge-invariant procedure is in contrast to the conventional approach to the 
interaction of electromagnetic radiation with a charged quantum mechanical particle 
(see e.g. Schiff 1968, Merzbacher 1970, pp 458-63). In the conventional approach, the 
quadratic term in the Hamiltonian is expanded and the resultant interaction terms are 
linear and quadratic in the vector potential. In addition there may also be a scalar 
potential. The wavefunction is expanded in terms of eigenstates of the unperturbed 
Hamiltonian? and the expansion coefficients are conventionally interpreted as prob- 
ability amplitudes (Merzbacher 1970, pp 150-4). However, these expansion 
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788 D H Kobe and E C T Wen 

coefficients are gauge dependent, and therefore have no physical meaning. Thus the 
postulate usually made in quantum mechanics that all expansion coefficients can be 
interpreted as probability amplitudes is false. 

This conclusion has not been accepted by some workers (Aharonov and Au 1979, 
Haller and Sohn 1979). They have attempted to show that the conventional approach is 
indeed gauge invariant (Aharonov and Au 1979). In most problems involving the 
interaction of electromagnetic radiation and matter, approximations, like perturbation 
theory and the rotating-wave approximation, are made. Thus questions of principle 
become intertwined with questions of approximation. However, if an exactly solvable 
model could be found the questions of principle could be considered separately. 

In this paper a charged harmonic oscillator, initially in its ground state, which 
interacts with a classical electromagnetic field in the electric dipole approximation 
(EDA) is solved exactly (Kobe and Wen 1980, Wen 1980). It is first solved in the 
gauge-invariant formulation, and the probability of finding the oscillator in the 
unperturbed state an at time t is obtained. Then the problem is solved by the 
conventional approach, and the ‘probability’ of finding the system in the same 
unperturbed state a,, at time t is also obtained. The two probabilities are compared and 
found to be different in general. By gauge invariance, the correct probability is 
obtained from the gauge-invariant formulation. The expansion coefficients in the 
conventional approach are not physically meaningful probability amplitudes and are 
thus without physical significance. The long-held belief that all expansion coefficients 
can be interpreted as probability amplitudes is shown to be false in general. The model 
used here shows that the conventional approach is not gauge invariant, which provides a 
counter example to attempts to prove the contrary (Aharonov and Au 1979). 

In 0 2 the gauge-invariant formulation of quantum mechanics is reviewed. The 
one-dimensional charged harmonic oscillator in an electromagnetic field in the electric 
dipole approximation is solved exactly in § 3 and the probability for finding the system 
in the unperturbed state an is obtained as a function of time. In § 4 the conventional 
approach to the treatment of classical electromagnetic radiation interacting with a 
quantum mechanical particle is reviewed and criticised. The charged harmonic oscil- 
lator is solved by the conventional approach in § 5 ,  and the ‘probabilities’ are also 
obtained. The conclusions are given in § 6. 

2. Gauge-invariant formulation of quantum mechanics 

The manifestly gauge-invariant formulation of non-relativistic quantum mechanics 
developed recently by Yang (1976) and by Kobe and Smirl(l978) is reviewed here. As 
Schwinger (195 1) has pointed out ‘gauge invariance difficulties naturally disappear 
when methods of solution are adopted that involve only gauge-invariant quantities’. 
After showing that the Schrodinger equation is invariant under gauge transformations, 
the gauge invariance of operators is discussed (Kobe and Yang 1980). Then the energy 
operator is obtained. The wavefunction is expanded in terms of eigenstates of the 
energy operator, and an equation for the gauge-invariant expansion coefficients is 
obtained. 

2.1. Gauge invariance of the Schrodinger equation 

The Hamiltonian for a single particle of mass m and charge q in an external radiation 
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field characterised by the vector potential A and the scalar potential A .  is 
2 1 

WA, A,) = - ( p  2m -‘A) c 
+ v + q ~ o  

where V is the external potential energy of the particle. The Schrodinger equation for 
the particle is 

(2.2) H ( A ,  A,)$ = iA &+?/at. 

This equation is form invariant under gauge transformations. 
A gauge transformation on the wavefunction, 

$‘ = exp(iqA/ch)$, (2.3) 

can be made, where A is a function of space and time. The usual gauge transformations 
on the potentials are 

A’=A+VA (2.4) 

A;  = A ~ - C - ’  aA/at. (2.5) 

and 

When equation (2.3) is substituted into equation (2.2) and equations (2.4) and (2.5) are 
used, we obtain 

(2.6) 

which is the same form as equation (2.2). Therefore the equation is form invariant 
under gauge transformations, which is the meaning of gauge invariance applied to the 
Schrodinger equation (see e.g. Bohm 1951). 

H ( A ’ ,  Ab)$’ = iA a$‘/at 

2.2. Gauge invariance of operators 

In order to develop a gauge-invariant formulation of quantum mechanics, it is necessary 
to obtain the transformation properties of operators corresponding to observables 
under gauge transformations. Of the many definitions of gauge transformation of 
operators in the literature (Strocchi and Wightman 1974) the one used here is the form 
invariance of the operators under unitary transformation (Kobe and Yang 1980). If we 
consider a Hermitian operator @(A, A,) corresponding to some observable which can 
depend on. the potentials of the electromagnetic field, gauge invariance of its expec- 
tation value requires that 

(2.7) 

where the wavefunction $’ is given by equation (2.3) and the new potentials A’ and Ab 
are given by equations (2.4) and (2.5), respectively. The left-hand side of equation (2.7) 
is the expectation value calculated by someone using the old gauge, while the right-hand 
side is the expectation value calculated by someone using the new gauge. The two 
expectation values must be equal because it should make no difference which gauge is 
used to calculate observable quantities. 

($l@(A, AoM) = ($’l@(A‘, AbIJI’) 

The expectation value of @(A, A,) can be written as 

($I@(A, Ad@) = ($’I@’(A, Ao)$’) (2.8) 
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where the operator @‘(A, Ao) is the unitarily transformed operator 

@’(A, A,) = exp(iqh/hc)@(A, Ao) exp(-iqhlhc). (2.9) 

The unitary transformation on the operator shall be called a ‘gauge transformation on 
the operator’. On comparing equations (2.8) and (2.7), we see that an operator has a 
gauge-invariant expectation value if 

12.10) 

In other words, an operator has a gauge-invariant expectation value if and only if a 
gauge transformation on the operator induces a gauge transformation on the potentials 
on which the operator depends. 

Some examples of such gauge-invariant operators are the kinetic momentum 
n = p -qA/c and the operator r0 = ih a/a t  - qAo. The energy operator discussed in 
the next subsection is another example. 

@’(A, Ao) = @(A’, Ab). 

2.3. Energy operator 

The Hamiltonian H(A,  Ao) is a gauge-dependent operator, since 

q a h  
H’(A, Ao)=H(A’ ,  Ao) =H(A’ ,  A&)+-  - 

c a t  

and so it cannot be the energy operator. On the other hand, the operator 

12.11) 

8 ( A ) = H ( A ,  Ao)-qAo=H(A, 0) (2.12) 

is gauge invariant, and is the energy operator. It satisfies the energy conservation 
condition in the form 

(2.131 d 
dt  - ( 4 I w w )  = (4IP4). 

The quantum mechanical power operator P is defined as (Yang 1976) 

P = i q (E .  U + U ‘ E )  (2.14) 

where E is the electric field and U is the velocity operator 

U = m - ’ ( p  -qA/c). (2.15) 

Equation (2.14) reduces to the classical expression for power when U and E commute 
with each other. Equation (2.13) shows that the time rate of change of the average 
energy of the particle is equal to the average power transferred to the particle by the 
electromagnetic field. 

2.4. Probability amplitudes 

In order to have a physical interpretation for the expansion coefficients of the wave- 
function, it is necessary for them to be gauge invariant. The wavefunction will be 
expanded in terms of the eigenstates of the energy operator $(A), which satisfies the 
eigenvalue problem 

S(A)rl/n = En+n.  12.16) 



Gauge invariance of a harmonic oscillator 79 1 

The eigenfunction t,hn and eigenvalue E,, depend on the time as a parameter. Since the 
energy operator is Hermitian, the states I(ln are a complete orthonormal set of states for 
time t, and consequently the wavefunction J, in equation (2.2) may be expanded as 

J,= 1 cnJ,n. (2.17) 
n 

When this expansion is substituted into equation (2.2) we obtain the set of equations 

ihi, -&,,cn = 1 (t,bnl(qAo-iA a/at)J,,)c, 
m 

(2.18) 

for the expansion coefficients. The matrix element in equation (2.18) is gauge invariant. 
When the gauge transformation in equation (2.3) is made on the wavefunction in 
equation (2.17), the energy eigenstates are likewise gauge transformed. The expansion 
coefficients cn are thus gauge invariant. Under a gauge transformation on equation 
(2.16), the energy operator $(A) is gauge transformed as in equation (2.9) and the 
energy eigenstates are transformed as in equation (2.3). Thus the energy eigenvalues E,, 

are gauge invariant. Equation (2.18) is gauge invariant, and the coefficient cn can be 
interpreted as the probability amplitude for the system to be in the state J,,, at time t. 

3. Gauge-invariant solution of the charged harmonic oscillator 

In this section the theory given in 3 2 is applied to the case of a one-dimensional charged 
harmonic oscillator in an electromagnetic field in the electric dipole approximation 
(EDA) (Kobe and Wen 1980, Wen 1980). In the EDA only the effect of the electric field 
on the system is considered, and magnetic effects are neglected. The wavelength of the 
electromagnetic radiation is taken to be long compared with the spatial dimensions of 
the system. Only the electric field at the origin need be considered, and the spatial 
variation of the field can be neglected. 

In the Coulomb gauge in the EDA, the vector potential can be replaced by its value at 
the origin. The Schrodinger equation for a one-dimensional harmonic oscillator of 
angular frequency w in the x direction is thus 

$m-’(p,  -qA( t ) / c )ZJ ,+$mw2x2J ,  =iA aJ,/at .  (3.1) 

The vector potential A(t )  = A,(O, t) is in the x direction, and the scalar potential is 
taken as zero because the sources of this external radiation field are at infinity. The 
electric field E in the x direction at the origin is 

E = -c-’ aA/at. (3.2) 

The energy operator %‘(A) in equation (2.12) for the problem in equation (3.1) is the 
same as the Hamiltonian, since the scalar potential of the external field is zero. 
Therefore the eigenvalue problem in equation (2.16) for the energy operator is 

&pX - q A ( t ) / c ) ’ / m  +$mw2x2]J,,, =E&,,. (3.3) 

The wavefunction J, in equation (3.1) is expanded in equation (2.17), where the 
expansion coefficients cn satisfy equation (2.18). 
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Equation (3.3) can be solved exactly by making the gauge transformation in 
equation (2.3) on the wavefunction $, with the gauge function (see e.g. Sargent et al 
1975) 

A(x,  t )  = -A(t)x. 13.4) 

The new vector potential A' in equation (2.4) is 

A'=O (3.5) 

and the new scalar potential Ab in equation (2.5) is 

Ab = -E(t)x.  (3.6) 

The new wavefuncfion 4' is given in terms of $ by equation (2.3), and is related to the 
new expansion functions $: by 

(3.7) 

from a gauge transformation on equation (2.17). The gauge transformed energy 
eigenvalue problem in equation (3.3) therefore becomes 

( i p : / m  +imw2x2)+L = E,,+: (3.8) 

where 4; is related to 4, by equation (2.3). This equation is the equation for a free 
harmonic oscillator whose solutions are +;= (P,, the eigenstates of the free harmonic 
oscillator with energy eigenvalues 

Equation (2.18) for the probability amplitudes is gauge invariant, since the matrix 
element is gauge invariant (Kobe and Smirl 1978), 

= hw(n +;), where n = 0, 1,2,3, . . . . 

(+,l(@o-ih a / a f ) $ m > =  ($kI(@b-ih d/Jt)rliL) (3.9) 

from equations (2.3) and (2.5). With the new scalar potential in equation (3.6) and the 
time-independent eigenstates 4; = @,, the matrix element in equation (3.9) becomes 

($Ll(qAb -itZ d / d t ) + L )  =-qE(t)(Qnlx@m).  (3.10) 

Therefore equation (2.18) for the gauge invariant probability amplitudes becomes 

ihCn -E,c,  = -E qE(t)((P,lx(P,)c,. 
m 

(3.11) 

In the EDA the equations are simpler in the gauge where the potentials are given by 
equations (3.5) and (3.6). This choice of gauge is only valid in the EDA for the effect of 
the electromagnetic field on the system. 

Since the harmonic oscillator ( P ,  are known, the matrix elements of x are (Merz- 
bacher 1970, p 64) 

(3.12) 

When this matrix element is substituted into equation (3.11), the equations can be 
solved exactly. In appendix 1 it is shown that if the system is in the ground state (PO at 
time zero, the solution to equation (3.11) for the probability amplitude c,  is 

(3.13) 

( ( ~ , l x @ , , , )  = (h/2mw)"*(Jn s ~ , ~ - ~  + Jnil s , , , ,~+~) .  

c, ( t )  = e"(')(n !)-"*Q(wt)" exp( - $IQ (cot)/*). 

The function Q(z )  is 

Q ( r )  = ia  e-iz loL ds e"f(s/w) (3.14) 
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where the dimensionless parameter a is 

a = 9 ~ ~ ( 2 m f i w ~ ) - ' / ~  (3.15j 

and the function f is 

f ( t )  = E(t)/Eo. (3.16) 

The phase factor p in equation (3.13) is given in equations (A1.8) and (Al.10). Since 
the function f in equation (3.16) is real, the phase factor p is real. At time t = 0 
equations (3.13) and (3.14) show that c,(O) = 0 for n = 1,2,3,  . . . , and co(0) = 1. 
Therefore the system is in the ground state at time zero. 

The probability of finding the system in the state a,, is the absolute value of equation 
(3.13) squared, 

(3.17) 

which is a Poisson distribution characteristic of a coherent state. The wavefunction 
which began in the ground state at time zero thus evolves into a coherent state at a later 
time. (The charged harmonic oscillator has been previously solved, see e.g. Heffner and 
Louise11 (1965). The Feynman path integral approach to the problem has also been 
used (Feynman and Hibbs 1965). See also Merzbacher (1970, pp 362-9).) 

In order to evaluate equation (3.17), we assume that the electric field is harmonic 
with a frequency R 

(3.18) 

where I9 is a phase factor. The function Q ( z )  in equation (3.14) can then be evaluated, 
and its absolute value squared is 

P,(t) = lc,(t)I2 = (n!)-'IQ(wt)12" exp(-IQ(wt)12) 

E ( t )  = Eo sin(Rt + 6) 

where 

p = n / w  (3.20) 

is the ratio of the frequency of the field to the frequency of the oscillator. The function 
is plotted in figure 1 against z = of for (Y = 1 , 9  = 0, and p = 1. The probability that 

the system is in the ground state Po(t) in equation (3.17) is shown in figure 2 as a function 
of wt for (Y = 1, I9 = 0 and various values of p. For n = 0, 1 , 2  and 3, P,(t) is plotted in 
figure 3. The contribution of other states is negligible, since the sum of the four 
probabilities in figure 3 is essentially one. 

4. Conventional approach to the interaction of classical radiation in quantum 
mechanics 

A critique of the conventional approach to the interaction of classical electromagnetic 
radiation and matter, which is found in most quantum mechanics books (see e.g. Schiff 
1968, Merzbacher 1970), will be given in this section. The usual approach to the 
interaction of electromagnetic radiation and matter is to expand the quadratic term in 
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0 1 2 3 4 5 6 
u t  

Figure 1. A plot of IQ(wt)12 in equation (3.19) and iR(ut)l* in equation (5.10) as a function 
of wi for a = 1, 4 = 0 and p = 1. 

(J t 

Figure 2. The probability P&) in equation (3.17) as a function of wt for (Y = 1, 8 = 0, and 
p=0.1,0.5,  1.0, 1.5and2.0. 

equation (2 .1) .  Then the Schrodinger equation in equation (2.2) becomes 

[ H o - q ( A . p  + p . A ) / 2 m c  + q ’ A ’ / 2 m c 2 + q A o ] ~  = i h  a*/&. 

Ho = p 2 / 2 m  + V 

(4.1) 

The unperturbed Hamiltonian Ho 

(4 .2)  

satisfies the eigenvalue problem 

HoQn = e,@, 

with eigenfunction Qn and eigenvalue e,. 

(4.3) 
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0 1 2 3 4 5 6 
W f  

Figure 3. The probabilities P,(r) in equation (3.17) as a function of wr for U = 1, 4 = 0, 
p = 0.1 for n = 0, 1 , 2  and 3. The full line is their sum. 

The wavefunction $ in equation (4.1) is then expanded in terms of the unperturbed 
eigenfunctions 

(4.4) 

with expansion coefficients a,. When equation (4.4) is substituted into equation (4.1) 
the equation 

ihu, -enan = E  (@,I[-q(A ' p  + p * A ) / 2 m c  + q 2 A 2 / 2 m ~ 2 + q A o ] @ m ) a m  (4.5) 
m 

is obtained for the expansion coefficients. The vector and scalar potentials are 
responsible for inducing a transition in contrast to equation (3.11). 

The expansion coefficients a, are not gauge invariant (Kobe and Smirl 1978). If a 
gauge transformation is made on the problem as in equation (2.6), then the wavefunc- 
tion and potentials in equation (4.1) are replaced by $', A' and Ab, respectively. To 
follow the conventional procedure in the new gauge, the wavefunction $' in equation 
(2.3) is expanded in terms of the eigenfunctions @, of Ho in equation (4.3) as 

where new expansion coefficients a:  are needed. The new expansion coefficients satisfy 
equation (4.5) with a,, A and A. replaced with a; ,  A' and A& respectively. A 
relationship between the new expansion coefficients and the old expansion coefficients 
can be obtained by substituting equations (4.4) and (4.6) into equation (2.3),  multiply- 
ing by @: and integrating. The result is 

a = (@, lexp(iqA/hc)@,,,)a,. 
m 

(4.7) 

Since A is an arbitrary function of space and time the matrix elements in equation (4.7) 
are not the Kronecker delta. In general la: 1' f la, 1' and the expansion coefficients are 
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not gauge invariant. Therefore they cannot properly be interpreted as probability 
amplitudes. 

In an effort to circumvent this problem it has been suggested that the proper 
expansion in equation (4.6) should be 

*' = a,@.:, 
n 

14.8) 

where 

@L = exp(iqh/hc)Q,,. (4.9) 

The functions satisfy the eigenvalue problem 

where the momentum operator p' is 

The momentum operator p' also satisfies the canonical commutation relations. 
In the new gauge, the equation for the expansion coefficients a, in equation (4.5) 

becomes 

ihun -enan = (@A/[-q(A *p'+p'*A)/2mc +q2A2/2mc2+qAo]@~)am. (4.12) 

The matrix element in equation (4.12) is the same as the matrix element in equation 
(4.5) so the two equations are the same. 

By following this procedure we have guaranteed that once we have chosen a gauge, 
all the calculations performed in other gauges give the same result. The question arises 
then as to how to choose the original gauge. The conventional answer to this problem is 
to choose the radiation gauge in which the vector potential A"' satisfies 

v .A'" = 0 (4.13) 

m 

and the scalar potential Ab'' satisfies 
Ab'' = 0 (4.14) 

because the sources are at infinity. Equation (4.5) simplifies in this gauge to 

ihu'," -ens!' = c (@fll(-qA(r'.p/mc +q2A(r)2/2mc2)@,)u% (4.15) 

where a:) denotes the expansion coefficient in the radiation gauge. The choice of the 
radiation gauge is, however, only a convention. It is then a postulate that the absolute 
value squared of the expansion coefficients jut' 1' have a physical interpretation as the 
probability of finding the system in the state @,,. 

The justification which is sometimes given for using the radiation gauge is that the 
gauge transformation in equation (2.4) on the vector potential changes only the 
longitudinal part of the vector potential (Barut 1964). The transverse part of the vector 
potential is unchanged by a gauge transformation. The vector potential can be written 
in terms of its transverse part AT and its longitudinal part AL as 

A = A = + A L  (4.16) 

where V *AT = 0 and V x A L  = 0. Under the gauge transformation in equation (2.4) the 

m 
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vector potential A' is 

A'=AT+AL 

where 

A t  =AL+VA. 

(4.17) 

(4.18) 

Therefore the transverse part of the vector potential appears unchanged by a gauge 
transformation. If the gauge function is also independent of the time, the scalar 
potential in equation (4.14) is likewise unchanged. In the radiation gauge only the 
transverse part of the vector potential is used. Thus by this procedure it appears that the 
choice of the radiation gauge has been justified. 

On the other hand if the gauge function A satisfies Laplace's equation 

V2A= 0 (4.19) 

then the gauge transformation in equation (2.4) can equally well be written as 

A'=Ak+AL (4.20) 

where 

Ak=AT+VA (4.21) 

since V. A$ = 0. Although the potential Ak would not satisfy the same boundary 
conditions as AT, the electric and magnetic fields would be unchanged. Thus the 
radiation gauge is not unique and unique values for the expansion coefficients a '," are 
not guaranteed. 

A deeper criticism of this approach can be made. The approach is not manifestly 
gauge invariant in the sense that the equations are not form invariant under gauge 
transformations. The equations of § 2  are all form invariant under gauge trans- 
formations, so that two physicists using different gauges will automatically obtain the 
same results. In the radiation gauge paradigm, it is necessary for the two physicists to 
transform to the same common gauge, namely, the radiation gauge, before making their 
calculations. Even if the radiation gauge were unique, this procedure is obviously not 
manifestly gauge invariant. It is only a convention which is agreed upon by all workers. 
But gauge invariance is not a matter of choosing a particular gauge by convention, any 
more than Lorentz invariance is a matter of choosing a particular coordinate system. 
Lorentz invariance, of course, means form invariance under all Lorentz trans- 
formations. Likewise, gauge invariance means form invariance under all gauge trans- 
formations. In the next section we shall see that for the harmonic oscillator the 
conventional approach does not agree with the gauge-invariant approach of 0 3. 

5. Conventional solution of the charged harmonic oscillator 

In this section we show that in the case of a charged harmonic oscillator the con- 
ventional approach gives a probability that the system is in an eigenstate of the 
harmonic oscillator CP, which is in general different from the probability of the 
gauge-invariant formulation of § 3. There cannot be two different results for something 
that is in principle observable. (Power (1978, p 12) derives two different expressions for 
the probability of finding the system in the ground state, and does not have a criterion 
for choosing between them.) The principle of gauge invariance tells us that the results 
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of 0 3 are correct and the results of the conventional approach are incorrect. (Geltman 
(1977) gauge transforms to the proper wavefunction before calculating the probability, 
without giving a reason for this procedure.) 

In the conventional approach, equation (3.1) for the one-dimensional harmonic 
oscillator in the EDA is expanded, which gives 

(Ho-qA( t )p , /mc + q z A ( t ) 2 / 2 m c 2 ) +  =in a+,lat. (5 .1)  

In this case the unperturbed Hamiltonian Ho is given in equation (4.2), where V is the 
one-dimensional harmonic oscillator potential. The eigenvalue problem for this Ho is 
given in equation (4.3), where CP, are the harmonic oscillator eigenfunctions and 
e,, = hw(n +$I for n = 0 , 1 , 2 , 3 ,  . . . . In this case equation (4.3) is the same as equation 
(3.8). The wavefunction @ in equation (5.1) is expanded in equation (4.4) in terms of 
the eigenstates CP,. When equation (4.4) is substituted into equation (5.1) the equation 
for the expansion coefficients a, is obtained 

4 ihu,,-E,an = -~- - -A( t ) (CP, /p ,CP, , )a , ,  
m mc 

where the energy g,, is 

E,, = hw(n  + t ) + q 2 A z / 2 m c 2 .  

(5 .2)  

(5.31 

For the harmonic oscillator the matrix elements of the momentum operator p x  are 
(Merzbacher 1970, p 64) 

When equation (5.4) is substituted into equation (5 .2) ,  it can be solved exactly as shown 
in appendix 2. If the system is originally in the ground state it develops into a coherent 
state at a later time (Heffner and Louise11 1965, Feynman and Hibbs 1965, Merzbacher 
1970, pp 362-9). The solution of equation (5 .2)  with equation (5.4) substituted into it is 

The function R is 

R ( z )  = Q ( z ) - i a g ( z / o )  (5.6) 

where Q ( z )  is given in equation (3.14). The function g is defined as 

where f is defined in equation (3.16). If g ( t )  = 0, then the conventional and gauge- 
invariant approaches agree with each other. If the field E( t )  is zero for times r > 7 and 
g ( t )  = 0 (i.e. A ( t )  = 0) for t > T, the same probabilities are obtained. The phase angle 
y ( t )  is given in equations (A2.3)  and (A2.4) .  If the function g is real, as it would be for a 
realistic electric field, then the imaginary part in equation (A2.3) vanishes. The state + 
in equation (4.4) is thus a coherent state, but it is different from the coherent state +' in 
equation (3.7). 

The absolute value squared of the expansion coefficient in equation ( 5 . 5 )  is 

la,(t)12 = (n  !)-'IR(wt)12" exp(-IR(wt)1*). 15.8) 
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This expression is also a Poisson distribution, but it is different from the one for lc,12 in 
equation (3.17). Since this conventional approach is not gauge invariant, it is equation 
(3.17) for lc,I2 which should be interpreted as the gauge-invariant probability P,,(t) of 
finding the system in the state @, at time t if the system is in the ground state at time 
zero. 

If we choose the harmonically varying electric field in equation (3.18), the function 
g ( z / w )  in equation (5.7) is 

(5.9) g ( r / o )  = p-'[cos 6 -cos(pz +a)]. 
The absolute value squared of the function R in equation (5.6) is thus 

C Y - ~ ~ R ( Z ) ~ ~  = a-21Q(z)12+[g(z /w) ]2  

- 2 g ( t / w ) { ( p  + l)-'sin[i(p + 1)2] si&p - 1)z + 81 

+(~-p)- 's in[ i ( l -p)z]s in[ i (p+l)r  +@I). (5.10) 

The function IRI2 is plotted against z = wt in figure 1 for a = 1, 6 = 0 and p = 1. A 
comparison with the function ( Q I 2  shows that the functions are not the same, so that the 
probabilities calculated by the conventional approach and the gauge-invariant formu- 
lation are not the same. The function lao12 is plotted in figure 4 against wt for the same 
values of a, 19, and p as in figure 2. Since these curves are different from the 
gauge-invariant probability in figure 2, they cannot properly be called 'probabilities'. 
However the values of 1af112 do add to unity, as shown in figure 5. These quantities 1aflI2 
are not the same as P,( t )  in figure 3 for the same values of a, 6 and p. Therefore, 
regardless of being normalised to unity they cannot be interpreted as probabilities. 

5. Conclusion 

The charged harmonic oscillator in an electromagnetic field in the electric dipole 
approximation (EDA) is solved using both the manifestly gauge-invariant formulation of 
quantum mechanics and the conventional approach. The results for the probability of 
finding the system in the unperturbed state a,, at time t differ in general. Since there 
cannot be two different expressions for the same physical quantity, we must conclude 
that the gauge-invariant formulation gives the correct answer. In this problem the 
conventional approach is incorrect. This problem is a counter example to the proofs 
that the conventional approach is gauge invariant. Although in some cases the 
conventional approach does give the same result as the gauge-invariant formulation, it 
is not true in general (Leubner and Zoller 1980). To be certain that a gauge-invariant 
result is obtained it is necessary to use the gauge-invariant formulation of quantum 
mechanics. 

This paper shows that the long-held view that all expansion coefficients have a 
physical interpretation as probability amplitudes is false. The probability amplitudes 
must be gauge invariant to have such an interpretation. Gauge invariance is ensured by 
using the gauge-invariant formulation. The conventional treatment of the interaction 
of classical electromagnetic radiation with a charged quantum mechanical particle leads 
to gauge-dependent expansion coefficients. 

The gauge-invariant formulation of quantum mechanics can be used with an 
arbitrary gauge. However, in the EDA the equations become simpler when a gauge 
transformation is made to the gauge in which the vector potential is zero and the scalar 
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ut 

Figure 4. The function lao(r)12 in equation (5.8) as a function of w t  for a = 1, 6 = 0 and 
p=O.1,0.5,1.0,  1 .5and2.0 .  

w t  

Figure 5. The functions ia,(r)12 in equation (5.8) as a function of w t  for a = 1, 6 = 0, p = 0.1 
and n = 0, 1, 2, 3,  4, 5 and 6. The full curve is their sum. 

potential is -E(O, t )  * r. In fact, the gauge transformation to this gauge can be regarded 
as a technique for solving the problem. Even though this particular gauge simplifies the 
gauge-invariant formulation, the problem can be expressed in an arbitrary gauge. 

The charged harmonic oscillator in the EDA can be solved exactly, so that approxi- 
mations do not obscure questions of principle. The case of a classical electromagnetic 
field is of interest since many practical problems can be formulated in terms of classical 
fields. The quantisation of the electromagnetic field is guided by the structure of the 
classical theory. However for the quantised electromagnetic field the electromagnetic 
field itself becomes part of the dynamical system. The treatment of a charged harmonic 
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oscillator interacting with a quantised electromagnetic field involves considerations 
other than those dealt with in this paper. 
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Appendix 1. Solution for probability amplitudes 

Equation (3.1 1) for c,, can be solved exactly when the matrix element in equation (3.12) 
is used. If equation (3.12) is substituted.into equation (3.11) the equation becomes 

(Al. 1) 
where E,  =hw(n +$), a isgiveninequation(3.15),andf(t)isgiveninequation(3.16). If 
the system is in the ground state at time t = 0, then it has been shown that the system 
develops into a coherent state at a later time (Heffner and Louise11 1965, Feynman and 
Hibbs 1965). Thus we shall assume that c, is given by equation (3.13), where the 
functions Q and p are to be determined. When equation (3.13) is substituted into 
equation (Al.l) we obtain 

(id+awf(t)-wQ)Q-'nc, =($U + b  +i~dlQ12/dt-awf(t)Q)c,. (A1.2) 

For this equation to be valid for all values of n it is necessary that the left-hand side 
vanish identically, 

(A1.3) 

- 
ihi, - E,,C,, = -afiwf(t)(dnc,-l + J Z ~ C , , + ~ )  

i d  + crwf(t) - w Q  = 0. 

This equation has the solution 

(A1.4) 

so we have obtained the function Q in equation (3.14). 

must also be zero. Therefore, the function p must satisfy 
If the left-hand side of equation (A1.2) is zero, the right-hand side of the equation 

B+fw+ifdlQ12/dt-aof(r)Q = O .  (A1.5) 
This equation is a complex equation, so that both the real and imaginary parts must be 
separately equal to zero. The imaginary part of this equation is 

Imb+~dlQ12/dt-Imawf(t)Q=0.  (A1.6) 
When equation (A1.3) is substituted into equation (A1.6), the result is 

Im b(t)  = 2aw Re Q ( w t )  Imf(t). (A1.7) 
This equation can be integrated to give 

Im p ( t )  = 2a J ds Re Q(s)  Imf(s/w). (A1.8) 
0 
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The constant of integration is zero because Im p(0) = 0. If f ( t )  is a real function, as it 
should be for the Hamiltonian to be Hermitian, then the right-hand side of equation 
(A1.8) is zero. However, in the rotating-wave approximation, it is convenient to take f 
to be complex. 

The real part of equation (A1.5) gives the equation 

Re b(t) = -46.1 +ao Ref(t)Q(wt). (A1.9) 

When this equation is integrated and equation (A1.4) is used, the result is 

Re @ ( t )  = -$or - a 2  Im [o"ds ~ o s d r f ( s / o ) f ( r / o )  exp[i(r-s)] (A1.10) 

since Re p(0) = 0. Therefore, the phase angle @ in equation (3.13) is real, and does not 
contribute when the absolute value of equation (3.13) is taken. 

Appendix 2. Solution for the conventional expansion coefficients 

When equation (5.4) is substituted into equation (5.2) for the expansion coefficients an, 
the result is 

(A2.1) 

where the energy E', is given in equation (5.3). The function g ( t )  is defined in equation 
(5.7), and is proportional to the vector potential since E = -aA/a(ct). Equation (A2.1) 
has a structure similar to equation (Al . l ) ,  and can be solved in a manner similar to that 
used in appendix 1. 

When equation (5.5) is substituted into equation (A2.1), an equation for the 
function R is obtained. The solution to this equation is 

- 
ituin -;"U, = hwag(t)i(Jn a,-1- JXi u,+I) 

R ( z )  = a e-" loz ds e"g(s/w) (A2.2) 

which is the same as equation (Al.4) with f replaced by -ig. The complex equation for 
y ( t )  gives the imaginary part and the real part. The imaginary part of y ( t )  is 

Im y ( t )  = -2a ds Im R ( s )  Im g(s/w)-2a2 J ds Re g(s/w) Im g ( s / w )  (A2.3) 
0 0 

since Im y(0)  = 0, which vanishes when g is a real function. The real part of y ( t )  is 

Re y ( f ) = - - - a Z  ds Re[g(s/w)12-a21m ds d7g(s/o)g(7/o)exp[i(7-s)] 2 j"Wr In"" Ins 
(A2.4) 

The function R ( z )  can be rewritten by substituting equation (5.7) into equation 
since Re y(0)  = 0. 

(A2.2) to give 

~ ( z )  = -ia e+ Joz ds (deis/ds) Ios drf(T/o). 

After an integration by parts this equation becomes equation (5.6). 

(A2.5) 
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